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Abstract
Adaptive management provides a useful framework for managing natural resources in the

face of uncertainty. An important component of adaptive management is identifying clear,

measurable conservation objectives that reflect the desired outcomes of stakeholders. A

common objective is to have a sustainable population, or metapopulation, but it can be diffi-

cult to quantify a threshold above which such a population is likely to persist. We performed

a Bayesian metapopulation viability analysis (BMPVA) using a dynamic occupancy model

to quantify the characteristics of two wood frog (Lithobates sylvatica) metapopulations

resulting in sustainable populations, and we demonstrate how the results could be used to

define meaningful objectives that serve as the basis of adaptive management. We explored

scenarios involving metapopulations with different numbers of patches (pools) using esti-

mates of breeding occurrence and successful metamorphosis from two study areas to esti-

mate the probability of quasi-extinction and calculate the proportion of vernal pools

producing metamorphs. Our results suggest that�50 pools are required to ensure long-

term persistence with approximately 16% of pools producing metamorphs in stable metapo-

pulations. We demonstrate one way to incorporate the BMPVA results into a utility function

that balances the trade-offs between ecological and financial objectives, which can be used

in an adaptive management framework to make optimal, transparent decisions. Our

approach provides a framework for using a standard method (i.e., PVA) and available infor-

mation to inform a formal decision process to determine optimal and timely management

policies.

Introduction
Conserving natural resources requires managers and policy makers to make decisions regard-
ing complex ecological systems. Structured decision making (SDM) and adaptive resource
management (ARM) provide a framework for making decisions, while incorporating various
sources of uncertainty, and aim to reduce uncertainty through the implementation of a well-
designed monitoring program [1–4]. The foundation of these decision analysis frameworks is
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the articulation of well-defined management objectives, but formulating objectives that best
capture the dynamics and response of the ecosystem to conservation actions is not trivial.

Objectives are clear, quantitative metrics that reflect the desired outcomes of stakeholders
and are used to guide decisions and measure success [4]. They are used to evaluate the response
of the system to conservation actions and are the focus of monitoring programs that are critical
to this evaluation [4–6]. A common objective for many management and conservation pro-
grams is to maintain a sustainable or viable population [7–10]. This objective is the main focus
for federal governments across the globe tasked with protecting species from extinction,
including the U.S., with the Endangered Species Act [11] and the Marine Mammal Protection
Act [12], Australia [13], Canada with the Species at Risk Act [14], and the European Union’s
Habitats Directive. Determining what constitutes a “sustainable” population is often a difficult
task that varies from one species to another or even among populations [15]. Still, such defini-
tions are necessary if an ARM framework is employed to differentiate among possible conser-
vation measures.

Population, or metapopulation, viability analysis (PVA) is a common tool used to evaluate
sustainability by calculating population persistence in response to changes in demographic
parameters. Such analyses can also determine the minimum viable population size necessary
for population persistence. The development of PVA corresponded with legislative mandates
to sustain viable populations of terrestrial vertebrates [16], and PVA metrics are often used to
evaluate the impacts of potential conservation or management actions [17–23]. Martin et al.
[24] argue that information about an ecological system is most useful to management and con-
servation when it is incorporated into models used to derive management decisions, and an
ARM framework that incorporates the metrics associated with PVA provides a useful tool for
informing conservation decisions [1,2,21,25–26].

Viability assessments of populations or metapopulations have been criticized for making
predictions that are imprecise and difficult to test. These criticisms are often attributed to poor
data, imprecise parameter estimates and inability to validate models, the lack of separation of
sampling and process variance in demographic parameters, and the potential effects of alterna-
tive model structures [16,21,23,27–31]. Bayesian population viability analysis (BPVA)
addresses some of these shortcomings by using posterior probability distributions for parame-
ters of interest in population projections [32–33]. Bayesian PVA models can be constructed so
that posterior distributions represent the process variation in the parameters, rather than the
full (undifferentiated) sampling distribution encompassed by most maximum-likelihood
approaches, and account for covariation between parameters, allowing one to fully incorporate
multiple sources of uncertainty in conservation decisions [34].

Bakker and Doak [35] also developed an approach to address a subset of the criticisms men-
tioned above; however, their approach only considers one management action at a time and
does not incorporate trade-offs between ecological and non-ecological (e.g., cost) objectives.
Our approach utilizes a Bayesian metapopulation viability analysis (BMPVA) to help stake-
holders determine measurable objectives that can be weighted with other competing objectives
(e.g., cost), to reflect the values and risk tolerances of stakeholders. By integrating the BMPVA
within an ARM framework, the criticisms of validating models and reducing uncertainty
among alternative model structures are naturally, and necessarily, addressed through regular
monitoring of the system and assessment of competing models.

Here, we use BMPVA to determine the number of occupied patches (breeding pools)
needed to ensure long-term persistence for two amphibian metapopulations. Amphibian popu-
lations around the world have declined in recent decades [36–39], and climate change may
exacerbate these declines. Many amphibian species use ephemeral pools for breeding, and
these species may be disproportionately affected by climate change. Temperatures are expected
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to increase and precipitation become more variable [40], which may result in shorter hydroper-
iods for breeding habitats, potentially increasing reproductive failure as habitats dry earlier.
Active conservation measures may be needed to mitigate these effects, but it is uncertain how
actions may influence long-term persistence. Accordingly, we developed a BMPVA to predict
long-term persistence of each metapopulation to determine whether conservation efforts are
warranted and, if so, how the metapopulation will respond to potential efforts.

Pond-breeding amphibians are often viewed as a metapopulation because of their strong
site fidelity among breeding adults, low dispersal rates, and spatially disjunct breeding sites that
vary in quality over space and time [41–43]. Population size at these breeding locations may
vary widely over time with frequent complete reproductive failure [44–48]. For these reasons,
occupancy surveys are often used to monitor amphibian metapopulations and the factors influ-
encing their dynamics [39, 49–52]. We used breeding and successful metamorphosis occu-
pancy probabilities estimated from existing data to parameterize a BMPVA for each study
area. We account for temporal and spatial variation in demographic parameters by using mul-
tiple years of data at all or a large sample of breeding habitats and incorporating these data into
a model that includes what we believe are the major drivers of the system. We then demon-
strate one way to use the BMPVA results to formalize management objectives within a decision
framework for the conservation of these species.

Methods

Ethics Statement
Sampling occurred with permission from Patuxent Research Refuge and Rock Creek National
Park under approval from the U.S. Geological Survey Patuxent Wildlife Research Center’s Ani-
mal Care and Use Committee. Occupancy surveys of wood frog egg masses were visual, and
the occupancy status of late-stage tadpoles was determined using dip net surveys. All captured
individuals were immediately returned to the pool of capture. All sampling procedures were
reviewed and approved as part of obtaining the field permits.

Species’ Biology and Data Collection
Wood frogs (Lithobates sylvatica) are widely distributed and range from the southern Appala-
chians to Alaska [53]. They rely on small, seasonal wetlands (vernal pools) for breeding [54–
56], and reside in surrounding upland habitat during the non-breeding season [45,57–58]. In
our study areas (description below), adult wood frogs migrate to breeding pools in late Febru-
ary or early March, and metamorphosis occurs in late May or early June. Adult females usually
breed for the first time as two-year-olds, and the average life span for this species is thought to
be three to five years [44].

Our study areas consisted of two federal land holdings in or near Washington, D.C., USA.
Patuxent Research Refuge (PRR) covers 5,280 ha and is located in central Maryland, USA;
approximately 75% of the refuge is deciduous forest. Rock Creek Park (ROCR) is a 710-ha
National Park within Washington, D.C., USA, consisting of approximately 85% mixed meso-
phytic forest. A random subset of 53 vernal pools was chosen from approximately 2,200 pools
at PRR and all nine of the pools at ROCR were included in our study (see [59] for site selection
details). Occupancy surveys were conducted at these pools shortly after wood frog egg masses
were laid (i.e., late February–early March) to assess the breeding status each year. Pools were
then revisited in late May or early June to determine hydroperiod length and to detect late-
stage tadpoles in those pools where eggs were detected. Hydroperiod length was determined by
the average time of year when the pond usually dried: short-hydroperiod pools rarely retained
water through early June, medium hydroperiod pools retained water through early June in wet
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years, and long-hydroperiod pools retained water through early June in most years. We assume
the presence of late-stage tadpoles (Gosner stage�35) represented successful metamorphosis.
Sampling occurred from 2006–2010 at PRR and 2008–2011 at ROCR. Details of the occupancy
surveys can be found in Mattfeldt et al. [60] and Green et al. [48]. We considered the aggrega-
tion of vernal pools at each study area as isolated populations due to the expansive urban areas
outside of these protected areas and, therefore, did not expect any immigration of wood frogs
into the study areas.

Model Structure and Parameterization
In previous work, we developed a Bayesian hierarchical model to estimate probabilities of
breeding and successful metamorphosis, while accounting for imperfect detection (see [48]).
We fit this model to the wood frog detection data from PRR and ROCR to obtain posterior pre-
dictive distributions for each parameter that we used in our BMPVA. Key parameters in this

model included: c1

it , the probability that pool i supports wood frog breeding in year t, and con-

ditional on breeding, c2

it is the probability that the pool supports successful metamorphosis in
the same year. Our analysis revealed that both parameters were influenced by pool-specific
characteristics, such as hydroperiod length and spatial arrangement. Pool hydroperiod was an

important predictor of breeding (c1

it) and successful metamorphosis probabilities (c2

it) at both
study areas. In addition, we distinguished between clustered pools, where multiple pools were
within 20 m of one another, and pools that are isolated (>300 m from the nearest pool); we
assumed that all pools acted as distinct breeding populations and were connected through dis-
persal of juveniles. The effect of spatial arrangement could not be assessed in the ROCR data
due to small sample size, but analysis of the PRR data suggested that the probability of breeding

(c1

it) was surprisingly higher for isolated pools, though the effect wasn't strictly significant [48].
Though contrary to traditional metapopulation theory, this result has been found in other
amphibians systems [61–63], possibly due to the acoustic nature of breeding aggregations. Iso-
lated pools likely draw in more individuals because there are fewer nearby breeding sites,
potentially increasing breeding occupancy probability. Accordingly, we included a spatial
arrangement effect in our BMPVA for the PRR wood frog systems, but not for the ROCR wood
frog system (see Methods: Simulations section).

Previous states, namely breeding state (eggs/no eggs) in year t -1, and metamorph state in
year t-2, were also included as pool specific covariates when projecting breeding probability,

c1

it , because we thought the female breeding population at a pool (represented by the presence
of egg masses) would primarily consist of returning breeding females (represented by breeding
occupancy status in the previous year) and first-time breeding females (represented by meta-
morph occupancy status two years prior). We modeled temporal variation in occupancy proba-
bilities using precipitation values obtained from local weather stations for months most likely
to influence breeding habitat (October-February) and successful metamorphosis (March-
May).

Simulations
We used the results from our previous Bayesian analysis, highlighted above, to construct and
parameterize a projection matrix model for each metapopulation. Breeding and metamorph
occupancy states for year t were chosen from the following distributions

ri;t � Bernðc1

i;tÞ ð1Þ
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and

si;t �
Bernðc2

i;tÞ; ri;t ¼ 1

0; ri;t ¼ 0
ð2Þ

(

where ri,t is the breeding occupancy state for pool i in year t, c1

i;t is the breeding occupancy

probability for pool i in year t, si,t is the metamorph occupancy status for pool i in year t, and

c2

i;t is the metamorph occupancy probability for pool i in year t. The metamorph occupancy

state is conditional on a pool supporting breeding because the presence of egg masses is neces-
sary for metamorphosis.

We simulated wood frog occupancy dynamics to evaluate metapopulation viability under
various circumstances by calculating the probability of quasi-extinction, mean time to extinc-
tion, and the proportion of pools producing metamorphs. We defined quasi-extinction as a
simulation in which all pools failed to produce metamorphs for two consecutive years. We
believe that this accounts for the storage effect [44,64] of surviving adult frogs returning to
breed after a year of complete reproductive failure. Female wood frogs are thought to usually
breed for the first time in their second year and live three to five years [44,65]; two years of
simultaneous reproductive failure at all pools would likely cause substantial declines in the
adult population, rendering the metapopulation effectively extinct.

Smaller metapopulations with fewer habitat patches (pools) are subject to a higher probabil-
ity of extinction due to demographic and environmental stochasticity [66]. Therefore, we con-
sidered scenarios using different numbers of pools to investigate the relationships between the
number of pools in the system (“pool population size”) and the probability of and time to
extinction for the metapopulation. As the pool population size increased, we expected the
probability of extinction to approach zero [30,67] and the number of pools producing meta-
morphs to stabilize. We used the estimated parameter distributions described above from each
of the two study areas (Tables 1–3) in combination with six levels of pool population sizes (5,
10, 25, 50, 75, and 100 pools) to create 12 different simulation scenarios.

For a given simulation scenario, we projected metapopulation dynamics over 100 years and
repeated the projection for 1,000 iterations. For each iteration, the number of pools in each
hydroperiod and spatial arrangement category was determined by randomly assigning the cate-
gories based on their frequencies in the corresponding study area. For example, to simulate
dynamics for the scenario involving 10 pools using the ROCR parameter distributions, the
number of pools with short, medium, and long hydroperiods were chosen with probabilities
0.556 (5/9), 0.333 (3/9), and 0.111 (1/9), respectively. For simulation scenarios involving PRR
parameter distributions, pools were randomly assigned to categories that represented a combi-
nation of hydroperiod length and spatial arrangement with associated probabilities in paren-
theses: short, clustered (0.444); short, isolated (0.185); medium, clustered (0.222); medium,
isolated (0.037); long, clustered (0.074); and long, isolated (0.037).

We included environmental variation in each simulation scenario by randomly assigning
one of the years for which we obtained estimates (i.e., 2008, 2009, 2010 for PRR and 2009,
2010, 2011 for ROCR) to each year within each iteration. To account for parameter uncer-
tainty, one value for each of breeding and successful metamorphosis probabilities associated
with pool i was chosen from the posterior predictive distribution associated with the randomly
selected year. For example, if we were conducting an iteration using the parameters estimated
from PRR and the first year of the iteration was randomly chosen to be “2009”, all parameter
values would be randomly selected from their respective posterior distributions associated with
PRR in 2009 (Table 1) to project occupancy states in year 2 within the iteration.
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At the end of each iteration, we determined whether the metapopulation went quasi-extinct
during the 100 year time horizon, and if so, the year of extinction was recorded. In all cases, we
recorded the number of pools producing metamorphs in each year. To summarize all 1,000

Table 1. Means (SD) of posterior predictive distributions of the probability of vernal pools supporting wood frog breeding (c^1) at Patuxent National
Research Refuge, Maryland, USA.

Hydroperiod Spatial rt−1 st−2 2008 2009 2010

Short Clustered 0 0 0.058 (0.023) 0.033 (0.017) 0.140 (0.053)

0 1 0.094 (0.095) 0.059 (0.069) 0.192 (0.152)

1 0 0.125 (0.065) 0.074 (0.044) 0.270 (0.125)

1 1 0.168 (0.141) 0.108 (0.111) 0.314 (0.194)

Isolated 0 0 0.148 (0.064) 0.089 (0.049) 0.307 (0.112)

0 1 0.200 (0.159) 0.132 (0.127) 0.356 (0.206)

1 0 0.274 (0.121) 0.176 (0.096) 0.482 (0.161)

1 1 0.319 (0.194) 0.221 (0.170) 0.511 (0.211)

Medium Clustered 0 0 0.385 (0.107) 0.258 (0.100) 0.611 (0.122)

0 1 0.426 (0.207) 0.310 (0.200) 0.627 (0.190)

1 0 0.569 (0.116) 0.422 (0.122) 0.763 (0.108)

1 1 0.592 (0.177) 0.457 (0.195) 0.774 (0.136)

Isolated 0 0 0.615 (0.156) 0.477 (0.172) 0.792 (0.123)

0 1 0.630 (0.206) 0.505 (0.230) 0.795 (0.150)

1 0 0.766 (0.118) 0.648 (0.150) 0.886 (0.082)

1 1 0.776 (0.139) 0.664 (0.182) 0.893 (0.083)

Long Clustered 0 0 0.976 (0.053) 0.960 (0.082) 0.989 (0.028)

0 1 0.978 (0.055) 0.963 (0.086) 0.990 (0.028)

1 0 0.989 (0.023) 0.981 (0.039) 0.995 (0.011)

1 1 0.991 (0.022) 0.984 (0.038) 0.996 (0.010)

Isolated 0 0 0.989 (0.028) 0.981 (0.045) 0.995 (0.016)

0 1 0.990 (0.028) 0.982 (0.046) 0.995 (0.013)

1 0 0.995 (0.011) 0.992 (0.018) 0.997 (0.006)

1 1 0.996 (0.009) 0.993 (0.015) 0.998 (0.004)

Values were sampled from the entire posterior distribution and used to project the occupancy dynamics of wood frogs in population viability analyses. The

breeding occupancy status in year t-1 is represented by rt−1 and the metamorph occupancy status in year t-2 by st−2 (0 = absent, 1 = present).

doi:10.1371/journal.pone.0144786.t001

Table 2. Means (SD) of posterior predictive distributions of the probability of vernal pools supporting wood frog breeding (c^1) at Rock Creek
National Park, Washington, DC, USA.

Hydroperiod rt−1a 2009 2010 2011

Short 0 0.061 (0.118) 0.253 (0.246) 0.079 (0.141)

1 0.098 (0.164) 0.365 (0.336) 0.127 (0.191)

Medium 0 0.478 (0.280) 0.830 (0.191) 0.571 (0.266)

1 0.555 (0.246) 0.860 (0.182) 0.640 (0.234)

Long 0 0.929 (0.183) 0.991 (0.033) 0.944 (0.166)

1 0.960 (0.115) 0.993 (0.026) 0.971 (0.090)

Values were sampled from the entire posterior distribution and used to project the occupancy dynamics of wood frogs in population viability analyses. The

breeding occupancy status in year t-1 is represented by rt−1 (0 = absent, 1 = present).
a Metamorph occupancy state at t-2 (st−2) was not included as a covariate to increase the number of years for which we obtained estimates of occupancy.

doi:10.1371/journal.pone.0144786.t002
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iterations for each simulation scenario, we calculated three metrics: (1) the probability of
extinction as the proportion of iterations in which the metapopulation went quasi-extinct, (2)
the mean year of extinction for iterations in which the metapopulations went extinct, and (3)
the average proportion of pools producing metamorphs (hereafter, metamorph occupancy

rate, ~c2) from all iterations in each year of the simulation. For simulation scenarios with a
probability of quasi-extinction�0.05, we calculated the mean proportion of pools producing
metamorphs from years 30–100 to allow the occupancy rate to stabilize and eliminate any vari-
ation due to transitions from the starting state to the stable state.

Incorporating BMPVA results into a decision framework
Incorporating ecological information into a decision analysis allows for the objective evaluation
of conservation measures in terms of conservation goals. This process involves defining a utility
function that represents a trade-off between all management objectives [24]. Managers of our
study areas are concerned that regional climate change predictions of increased temperatures
and variable rainfall will lead to reductions of amphibian habitats. They have considered con-
structing new pools (ROCR) or modifying existing unproductive pools (PRR) to increase the
number of pools producing metamorphs to mitigate these anticipated climate-related pro-
cesses. However, these actions incur cost.

In this case, the biological and financial objectives are competing; managing vernal pools
increases the probability of metapopulation persistence and the number of pools producing
metamorphs but incurs financial costs. We developed a utility function that captures the trade-
offs between the biological objectives quantified by our BMPVA and the costs associated with
management actions to provide managers with an objective evaluation of the expected out-
comes for each management action.

Because we only simulated metapopulation dynamics for systems with 5, 10, 25, 50, 75, and
100 pools, we interpolated the probability of persistence for other metapopulation sizes. We
treated each iteration of the BMPVA as a data point, where yi = 0 if the metapopulation went
extinct and yi = 1 if it remained extant over the time horizon. We then regressed these data
against the metapopulation size using logistic regression in the glm function in Program R
[68]. We used the estimated coefficients to predict the probability of persistence for metapopu-
lations consisting of different numbers of pools.

Here, we considered four management actions: 1) do nothing, 2) create 1 pool, 3) create 2
pools, and 4) create 3 pools per year. The maximum value of 3 managed pools was chosen
through informal consultations with managers of our two study areas; it reflects the upper
limit of annual effort that would be given to this habitat manipulation. Other managers may

Table 3. Means (SD) of posterior predictive distributions of the probability of vernal pools supporting wood frogmetamorphosis (c^2) at Patuxent
National Research Refuge, Maryland, USA and Rock Creek National Park, Washington, DC, USA.

Study area Hydroperiod 2008 2009 2010 2011

Patuxent Short 0.119 (0.104) 0.188 (0.145) 0.036 (0.045) -

Medium 0.677 (0.112) 0.781 (0.110) 0.335 (0.115) -

Long 0.743 (0.106) 0.831 (0.091) 0.415 (0.147) -

Rock Creek Short - 0.109 (0.236) 0.306 (0.352) 0.186 (0.277)

Medium - 0.152 (0.278) 0.312 (0.242) 0.173 (0.196)

Long - 0.936 (0.142) 0.979 (0.086) 0.981 (0.066)

Values were sampled from the entire posterior distribution and used to project the occupancy dynamics of wood frogs in population viability analyses.

doi:10.1371/journal.pone.0144786.t003
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choose any maximum value to reflect their logistical and habitat constraints. Given our chosen
maximum, the utility function represents the gains in metapopulation persistence per pool
managed (i.e., costs). We calculated the marginal gains [69] to determine the utility value for
each potential management action, given the number of pools in the metapopulation. The mar-
ginal gains, Gx, for x number of pools managed were calculated as:

Gx ¼
�x � �0

x
;

where ϕx − ϕ0 is the change in the probability of persistence if x pools are created versus doing

nothing. Management actions that result in expected ~c2 greater than the threshold determined
by our BMPVA receive a utility value (Ut) equal to the marginal gains (i.e., Ut = Gx). For actions

resulting in expected ~c2 dropping below the threshold level, there is no value associated with
that management action (i.e., Ut = 0).

Results

Simulations
Our simulations yielded similar results for both the PRR and ROCR wood frog metapopula-
tions. This is likely because, on average, occupancy estimates were similar between the two
study areas, which was not initially obvious due to the year-to-year variation in estimates. The
probability of quasi-extinction decreased rapidly as the number of pools in the system
increased, while the mean time to extinction (TTE) increased with the number of pools in the
system (Fig 1). The probability of quasi-extinction fell below 0.05 when there were at least 50
pools in the system using estimates from either PRR or ROCR. The mean TTE for iterations in
which the metapopulation went quasi-extinct increased with the number of pools in the sys-
tem: for PRR scenarios, TTE increased from 14 years for 5 pools to 46 years for 25 pools (i.e.,
the smallest number of pools resulting in the probability of quasi-extinction>0.05) and from
11 years with only 5 pools to 73 years with 50 pools for ROCR scenarios.

The metamorph occupancy rate declined rapidly for scenarios involving a small number of
pools, and the magnitude of the decline was slightly different among study areas (Fig 2). The
rate of decline was more rapid for PRR scenarios with 5 and 10 pools compared to ROCR sce-
narios with the same number of pools. However, for systems containing enough pools to
ensure long-term persistence (i.e.,�50 pools, where probability of quasi-extinction�0.05), the
metamorph occupancy rate stabilized at almost the same value. Using estimates from PRR, the
mean metamorph occupancy rate for years 30–100 was 0.156 (SD: 0.002), and similarly, the
mean metamorph occupancy rate using estimates from ROCR was 0.158 (SD: 0.002). This sug-
gests that approximately 16% of pools should produce metamorphs to ensure long-term persis-
tence in systems with adequate number of pools. In our wood frog systems, we determined a
minimum of 50 pools is necessary to ensure a 0.95 probability of population persistence over
100 years, and approximately 16% of the pools should support wood frog metamorphosis,
given the occupancy estimates from either PRR or ROCR.

Incorporating BMPVA results into a decision framework
The predicted probability of persistence as a function of number of pools (n) was estimated
using logistic regression: logit(ϕ) = β0 + β1n. The coefficients were estimated as β0 = -3.867 and
-2.108 and β1 = 0.268 and 0.199 for PRR (pseudo-R2 = 0.876) and ROCR (pseudo-R2 = 0.748),
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respectively (Fig 3). This results in utility functions of

Ut ¼
Gx; if ~c2 � 0:156

0; if ~c2 < 0:156

(

Fig 1. The probability of quasi-extinction ((P(ext)) and the mean time to extinction (TTE) for wood frog metapopulations. Simulation scenarios
consisted of combining estimated parameter distributions from (a) Patuxent National Research Refuge, Maryland, USA and (b) Rock Creek Park,
Washington, DC, USA with different numbers of vernal pools (n): 5, 10, 25, 50, 75, and 100 pools. One thousand iterations were run for each scenario. Quasi-
extinction occurred when no pools produced metamorphic wood frogs for two consecutive years. Quasi-extinction was not observed in simulations involving
>50 pools. Error bars for TTE represent 1 standard deviation.

doi:10.1371/journal.pone.0144786.g001

Fig 2. Themean proportion of vernal pools (from 1,000 iterations) supporting wood frogmetamorphosis (metamorph occupancy rate, c
�
2) in

simulations using occupancy estimates from (a) Patuxent National Research Refuge, Maryland, USA, (b) and Rock Creek Park, Washington, DC,
USA, over a 100-year time horizon for scenarios with metapopulation sizes (n) of 5, 10, 25, 50, 75, and 100 pools. Labels represent the number of
pools in the metapopulation, and overlapping lines represent scenarios for 50, 75, and 100 pools.

doi:10.1371/journal.pone.0144786.g002
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and

Ut ¼
Gx; if ~c2 � 0:158

0; if ~c2 < 0:158

(

for PRR and ROCR, respectively. There are marginal gains from management when n> 26
pools (ϕ� 0.95). At both sites, the greatest marginal gain is achieved by creating three pools
until the number of pools exceeds the inflection point of the persistence curve (~10–13 pools);
at this point the optimal action switches to managing one pool.

Discussion
The concept of adaptive resource management (ARM) has gained wide support recently in the
fields of natural resource management and conservation as a framework to make optimal man-
agement decisions. ARM allows one to deal with several sources of uncertainty through model-
ing approaches and well-designed monitoring programs [70]. When taking this approach,
clear, measurable management objectives are required [4]. We used posterior parameter distri-
butions obtained from data specific to our study areas in a BMPVA to incorporate correlated
environmental and parameter uncertainty into our simulations. This approach allows us to bet-
ter represent the ecological processes and associated uncertainties by separating sampling and
process variance. BMPVA provides a method for defining and quantifying relevant objectives
that may be difficult or impossible to directly measure, such as population persistence or viabil-
ity, by using available information to simulate long-term population dynamics.

Often, decision makers have little information on historical population sizes or ecosystem
dynamics, which may relate to management objectives. This uncertainty may lead to reluctance
or doubt in defining appropriate biological objectives to use as a measure of ecosystem health.
Viability analysis and, more specifically, BMPVA provide a means to quantify these objectives
even when data are sparse by projecting the population through time in response to annual
changes in environmental conditions or management actions. Incorporating uncertainty in
parameter estimates provides a measure of confidence in the ability of a state-variable (e.g.,

Fig 3. Probability of persistence (ϕ) of wood frog metapopulations at (a) Patuxent National Research Refuge, Maryland, USA and (b) Rock Creek
Park, Washington, DC, USA, given the number of pools in the metapopulation (n), andmarginal gains (Gx) associated with the number of pools
managed (x). Simulation results are represented by closed circles (see Fig 1). Management actions consisted of doing nothing or creating x pools.

doi:10.1371/journal.pone.0144786.g003
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proportion of pools with successful metamorphosis) to represent a management objective (e.g.,
metapopulation persistence). Incorporating stochasticity into PVAs is important for making
appropriate predictions and management decisions [30,71], especially as environmental condi-
tions may change in the future. The iterative nature of ARM provides a useful framework for
addressing potential future changes in ecological processes or parameter values because the
components of the decision analysis are revisited on a regular basis. New models can be added
to the model set to reflect new factors influencing the system, and parameter estimates can be
updated as more information is gathered through a monitoring program.

PVA has been criticized for its inability to predict extinction probabilities and minimum
viable population size [16] due to poor information on important parameters and the inability
to evaluate competing models [21,23,27–29]. Here, we address these elements by developing a
Bayesian projection model specific to our biological systems, capturing what we believe are the
major drivers of the system, parameterizing the model with estimates based on several years of
data, and accounting for both sampling and process variance. Our data revealed high temporal
variation among years, especially for short hydroperiod pools; however, we acknowledge that
there may be other factors that influence wood frog occupancy dynamics that are not currently
included in our simulations. For example, Ranavirus (Family: Iridovirus) has been known to
cause localized reproductive failure in many amphibian species [72], and occasional die-offs
have been observed at select PRR pools (E.H.C. Grant, U.S. Geological Survey, personal com-
munication). The inclusion of additional years of data would likely better capture the inherent
variability in vernal pool systems and its impact on wood frog metapopulations. Despite only
including three years of estimates in the BMPVA, we believe that it is still justified to use avail-
able local data to help make informed management decisions, updating the estimates over time
with additional monitoring data. Other studies have also suggested that phenomena, such as
inbreeding depression, genetic drift, and genetic bottlenecks, may increase the probability of
extinction, especially for small, isolated populations (e.g., [21,73–75]). In a concurrent study,
we found dispersal rates of 8–15% from natal pools [65], and Furman et al. [76] found no evi-
dence of differentiation among wood frog populations over a larger spatial scale and more het-
erogeneous landscape. Therefore, we do not believe that genetic factors have a substantial role
in the metapopulation dynamics at our study sites.

Monitoring may be important to identify changes in the hydrology of pools over time. We
did not address the non-stationarity of pool hydrology within our simulations, but as the cli-
mate changes, we may expect pools to dry earlier, potentially affecting occupancy probabilities.
Rather than attempt to model the complex interactions between topography, evapotranspira-
tion, evaporation, soil permeability, and precipitation (e.g., [77–79]), managers could reassess
the hydroperiod of pools at longer time intervals (e.g., 10 years) to update pool hydroperiod
status, and even incorporate these habitat transitions in simulations to better reflect amphib-
ian-habitat dynamics.

The two study areas highlighted in this paper are part of a larger effort to better manage ver-
nal pool species in the northeastern U.S. (see [59] for other landowners). Our utility function,
while realistic, simply represents a template that includes biological and logistical objectives
whose values will vary among each participating federal land owner. For example, using our
utility function, managers can identify the point at which the gain in persistence is negligible
(e.g., ϕ> 0.85, ϕ> 0.99), such that the increase in persistence resulting from management
does not represent an increase in the utility. Alternative utility functions should be developed
to represent appropriate stakeholders’ values for each objective in a particular scenario. There
is a large body of literature detailing methods for identifying utility functions that capture
stakeholders’ values and risk tolerances associated with each objective [80–85]. Examples of
these methods include: identifying constraints beyond which an outcome is unacceptable (i.e.,
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metamorph occupancy threshold); pricing out objectives, a technique that identifies how much
stakeholders are willing to trade one objective (e.g., cost) to change another objective (e.g.,
abundance or persistence; [85]); and calculating the certainty equivalent, a guaranteed return
stakeholders would accept over a higher, but uncertain, return [82]. These approaches may
result in non-linear relationships between objectives and their utility functions depending on
stakeholders’ values and their degree of risk aversion.

Likewise, there are numerous methods that combine several single-objective utility func-
tions into an overall utility function [85–87]. Applying constraints to some objectives may
reduce the decision problem to a single-objective optimization, which simplifies optimization.
For problems where constraints cannot simplify the decision process, each objective can be
scaled from 0 to 1 using proportional scoring and then combined into an additive utility func-
tion, weighting each objective by stakeholder importance [85–87]. Elicitation techniques, such
as swing weighting [85,88] and the Delphi method [89–90], are useful methods for quantifying
the relative value (weight) of each objective. Other approaches do not necessarily result in opti-
mal decisions, but identify actions that maximize the minimum gains (maxi-min) or minimize
the maximum losses (mini-max; [91–92]), satisfy all stakeholders (satisficing; [93]), or provide
a robust decision when there is a large amount of uncertainty (info-gap; [94–96]). In our exam-
ple of maintaining amphibian populations, each federal land owner must develop their own
utility function that represents the values of their stakeholders. These changes may ultimately
change management decisions, but the framework used in the decision process is the same.

Stochastic Dynamic Programing (SDP; [97–98]) can be used to determine the decision that
optimally balances multiple competing objectives over time. SDP uses the utility function to
determine the value of making a particular management decision, given the current state of the
system. By projecting system dynamics and management decisions, a decision policy can be
found that optimizes all objectives over a long time horizon, while accounting for uncertainty
in system dynamics, management efficacy, and model uncertainty.

Using existing data and its associated uncertainties within a BMPVA to quantify difficult to
measure or unknown management objectives and incorporate them into utility functions is
consistent with the aims of ARM. The most current information is used to make informed
decisions and update models as more information is gathered. Future decisions made through
ARM are based on the accumulation of information and updated on a regular basis to reduce
uncertainty and incorporate changing stakeholder objectives.
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